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QEMU usage
• Both KVM and Xen use QEMU emulation (IDE, e1000)

• None use the binary translation in QEMU.
– Xen and KVM in the hypervisor code base deal with opcodes:

– movdqa m128,xmm
– (traped on MMIO access)

• KVM uses QEMU as control stack (launch/destroy guest) as in privileged 
operations (access to /dev/kvm).

• Xen uses only QEMU emulation (which is why you can’t launch guests 
with QEMU parameters and need to use libvirt or xl).
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Evil guest attack vectors

• Cloud provides have to deal with risk of customers becoming evil.

• The “customers” have usually four primary attack vectors:
– Emulation (VENOM – CVE-2015-3456) of floppy driver, VGA, NICs, etc in QEMU.

– MSRs (x2APIC range gap – CVE-2014-7188) of x2APIC emulation in hypervisor.

– VMCALL (hypercalls to hypervisor – CVE-2012-3497).

– Opcode emulations (INVEPT instructions – CVE-2015-0418).

• This talk is about the first: QEMU and ways to lessen the impact if it is 
exploited, or alternatively erect more “jails” around QEMU.
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Xen and KVM architecture (usual)
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Xen disaggregated architecture

● Move QEMU to be a standalone 
guest running in ring0 (32MB 
guest).

● Each stubdomain serves one 
guest.

● Evil guest has to subvert stub 
domain emulation first, then from 
there jump to control domain.
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Xen disaggregated architecture (network)

● Evil guest uses e1000 for attack.

● QEMU uses PV frontend driver to send 
packets to real backend

● If evil guest subverts stub domain the 
next attack is the PV protocol

● CVE-2015-8550: double fetch:

“Specifically the shared memory between the 
frontend and backend can be fetched twice 
(during which time the frontend can alter the 
contents) possibly leading to arbitrary code 
execution in backend.

● But protocol MUCH simpler 
than emulated devices.
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Xen disaggregated architecture (serial)

● Privilege opcodes (out/in) always 
end up in hypervisor.

● A ring between hypervisor and 
QEMU for device model to 
process.

● QEMU and xenstored have a PV 
ring to copy data back/forth.
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Xen disaggregated architecture: jail around QEMU

● In effect the barrier between 
QEMU and control stack is via the 
PV ring.

● If evil guest exploits stub domain 
they are the same place as 
before.

● Attacks left then are via:
– MSRs

– Hypervisor hypercalls

– Opcode emulation

– (But this presentation is not about those 
attacks).
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Can we do something similar in KVM?
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• QEMU is used for emulation and control stack.
– If we disaggregate QEMU we can move each component in its own process.

• We have security measures in place: 
– secomp & ebpf (filter the ioctls to /dev/kvm)

– Containers (chroot jails)

– Continuing work on improving QEMU security

• Sure, but separating components apart (each running in its own jail) 
means we can focus security audit on the high-stake parts

• OK, how do we do this?

12

Can we do something similar in KVM? Is it needed?
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A big binary

elmarco@boraha:~$ ls -lhS /bin/ | head -n20

-rwxr-xr-x.   1 root root        33M Aug 16 16:00 dockerd-current

-rwxr-xr-x.   1 root root        17M Sep 15 00:46 emacs-25.3

-rwxr-xr-x.   1 root root        16M Sep  7 16:32 node

-rwxr-xr-x.   1 root root        15M Jun 26 11:51 ocamlopt.byte

-rwxr-xr-x.   1 root root        15M Jul  4 15:33 doxygen

-rwxr-xr-x.   1 root root        13M Aug 16 16:00 docker-current

-rwxr-xr-x.   1 root root        12M Sep  8 21:59 qemu-system-aarch64

-rwxr-xr-x.   1 root root        12M Sep  8 21:59 qemu-system-arm

-rwxr-xr-x.   1 root root        12M Jun 26 11:51 ocaml

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-x86_64

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-i386

-rwxr-xr-x.   1 root root        11M Jun 26 11:51 ocamlc.byte

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-mips64el

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-mips64

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-mipsel

-rwxr-xr-x.   1 root root        11M Sep  8 21:59 qemu-system-mips

-rwxr-xr-x.   1 root root       7.1M Apr 25 17:44 crash

-rwxr-xr-x.   1 root root       6.9M Jun 26 11:51 ocamldoc.opt

-rwxr-xr-x.   1 root root       6.4M Jun 26 11:51 ocamlopt.opt
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A big project

$ cloc qemu-2.10
- files: 4 280
- comment: 172 425 
- code: 1 186 140

$ cloc kvmtool
- files: 275
- comment: 3 728
- code: 27 844
$ cloc crosvm
- code: 32 159

$ cloc linux
- files: 49 744
- code: 16 834 046

How much with all dependencies?
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Still growing
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locMostly in C!
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Many dependencies

● Fedora 26: qemu 2.9.0-5.fc26.x86_64

$ readelf -d /usr/bin/qemu-system-x86_64  | grep NEEDED | wc -l
60

$ ldd /usr/bin/qemu-system-x86_64 | wc -l
158

● Kvmtool (with all optional dependencies, gtk3, SDL, vncserver...)

$ readelf -d lkvm | grep NEEDED | wc -l
19

$ ldd lkvm | wc -l
83
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Too big to fail
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Paolo threads



VCPU0

VCPU3

VCPU1

VCPU2

UI

Dev1

Dev2

Dev3

libvirtd

Worker ...

Ideal architecture ?

qemu



Why not?

● The monolithic vs microkernel/services debate
● Difficult to manage
● Difficult to debug
● Difficult to test (test matrix)
● Performance?



Why seperate processes?

● Modularity
● clear interface separation = less conflicts/bql concerns
● smaller qemu, less dependencies
● allowing alternative implementations, “crazy” ideas
● separate projects, different release cycles...

● Isolation (+iommu) & crash robustness
● Better sandboxing (seccomp/ns)
● Easier monitoring/tweaking (memory, cpu etc)



Sandboxing for dummies

Change user id

Regular DAC/MAC check

Add/drop capabilites(7)

Subset of root privileges (if needed)

Namespaces(7)
Own view/access of the system (uid/pid/ns/net/ipc..)

Seccomp()/bpf

Filter syscalls

Libvirt, minijail, systemd, flatpack...



A word about memory fragmentation

All devices & workloads in a single process can lead to more 
fragmentation.

Using subprocesses may help to partition the load and more 
easily reclaim the space.
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How? various strategies

● Fork-only strategy (crosvm)
● Code in same binary
● No version combinations, less modularity
● Device setup and teardown can be hardcoded in parent

● Exec a helper or device process
● Can allow arbitrary implementations
● IPC require greater level of stability
● Nicer if IPC allows various kind of devices
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Managing the processes

● Qemu
● Not a great idea to fork from qemu (VM space, safety)
● Slirp & migration can do it...
● Could exec() from an helper process instead?

● Outside, libvirt or other:
● Not suitable for command line users
● Natural fit for libvirt etc
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How? various device needs

● HW description & bus registration
● Communication mechanism:

● Io / Mmio regions & rw events, Irqs
● Memory map (& iommu)
● Or at higher level of abstraction (USB etc)

● acpi / device-tree manipulation (& fw_cfg)
● Device state & migration
● Dirty regions tracking, post-copy...
● Object hierarchy / introspection
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KVM <-> device emulation

Direct memory access

Or VM exit:
run = mmap(cpufd,..)
ioctl(cpufd, KVM_RUN)
run→exit_reason == KVM_EXIT_IO/MMIO
run→io/mmio_addr mapping
BQL!
MemoryRegionOps.read/write()

← ioctl(vmfd, KVM_IRQ_LINE, irq_level)
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KVM nifty ioctl

KVM_IOEVENTFD

This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address within the guest.  A 
guest write in the registered address will signal the provided event instead of triggering an 
exit.

KVM_IRQFD

Allows setting an eventfd to directly trigger a guest interrupt.
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Ioeventfd vs MemoryRegionOps

struct kvm_ioeventfd {

        __u64 datamatch;

        __u64 addr;        /* legal pio/mmio address */

        __u32 len;         /* 0, 1, 2, 4, or 8 bytes    */

        __s32 fd;

        __u32 flags;

        __u8  pad[36];

};

Write only, coalesced events, not a range API

Extend it to support ranges - IOEVENTFD_FLAG_RANGE?

Then KVM_GET_IOEVENTS (similarity with AIO)
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For traditional sync devices

IPC qemu → helper (necessary for TCG)

Introduce a KVM user device?
devfd = ioctl(vmfd, KVM_CREATE_DEVICE_USER)
reg = {
  .group = KVM_DEV_USER_GROUP,
  .attr = KVM_DEV_USER_SET_MEMORY_REGION,
  .addr = (struct) { .slot = 0,
                     .addr = 0x3f8,
                     .flags = PIO,
                     .eventfd = efd }  
}
ioctl(devfd, KVM_SET_DEVICE_ATTR, &reg)
poll(efd)
ioctl(devfd, KVM_GET_DEVICE_CPU_EXITS, &exits)
ioctl(devfd, KVM_SET_DEVICE_CPU_EXITS, &exits)
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Migration

In qemu stream vs out of stream

Handled by qemu or not

Security aspect

Share VMState infrastructure with helper?
Instead of blobs

Make it a library, IPC hook for saving/loading to/from stream

Unlikely to be accepted as standard in external projects

Mostly non-existent today, with rare exceptions
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And today?

✔ VNC / Spice
✔ Block devices
✔ usbredir / cacard
✔ ipmi-bmc-extern
✔ TPM emulation
✔ ivshmem device
✔ vhost, vhost-user 
✔ VFIO/mdev
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VNC & Spice

UI in remote process

Resume session

Migration

VT & monitor?
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What about?

QEMU to start a graphical client instead?

Remove GTK/SDL/VTE/audio code from qemu?
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Block devices

$ qemu-nbd -k nbd.sock vm.qcow2

$ qemu -drive driver=nbd,
  server.path=nbd.sock,server.type=unix

NBD server
process

Qemu
process

(other protocols exist: iSCSI, NBD, SSH, Sheepdog, gluster, http/ftp..)
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Block devices

Would performance be good enough for general case?

Could use shared memory, to avoid extra copy, opportunistic polling...
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Usbredir

$ usbredirserver -p 2001 <vendorid>:<prodid>

$ qemu <ehci-uhci> …
-chardev socket,port=2001,id=chr
-device usb-redir,chardev=chr 

USB device
process

Qemu
process

✓migrate ✗migrate
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USB Devices

QEMU emulation of USB devices in
standalone process using usbredir API?
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Cacard

$ qemu … -device usb-ccid
-chardev socket,server,port=2001,id=chr
-device ccid-card-passthru,chardev=chr

$ vscclient <host> 2001

Smartcard
process

Qemu
process

✓migrate ✗migrate
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Ipmi-bmc-extern

$ ipmilan -c conf-file -f cmd-file -s statedir

$ qemu … -device ipmi-bmc-extern,chardev=chr
-chardev socket,id=chr,host=localhost,port=…
-device isa-ipmi-bt,bmc=bmc0,irq=0

Ipmi/BMC
process

Qemu
process
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TPM emulator

$ swtpm socket --tpmstate dir=/tmp/myvtpm --ctrl 
type=unixio,path=/tmp/ctrl

$ qemu … -tpmdev emulator,id=tpm0,chardev=chr
-chardev socket,id=chr,path=/tmp/ctrl
-device tpm-tis,tpmdev=tpm-tpm0,id=tpm0

TPM device
process

Qemu
process

✓migrate soon
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Vhost overview

Q
E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

Virtio dev

H
o
st

 O
S

vhost
Linux:
- net
- vsock
- scsi



49

vhost-user
Q

E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

virtio
vhost-user

        Virtio dev

vhost-user

events: kick/call

-net, -scsi today!

-blk, -gpu, -input, -crypto coming!
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Vhost(-user) in a nutshell

Memory listener to have RAM flat view

SET_MEM_TABLE

SET_VRING_ADDR,
SET_VRING_NUM

SET_VRING_KICK(fd), SET_VRING_CALL(fd)

(Fd) Guest
Address

User
Address

Size

34 0xA000 0xf2bc0000 0x40000000

...

Index Desc
Address

Used
Address

Avail
Address

0 0xf2bc100
0

0xf2bc200
0

0xf2bc3000
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vhost-user-gpu = gpu stack out
Q

E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

virtio-gpu
vhost-user-gpu

        Virtio dev

vhost-user

GPU UPDATE

-object vhost-user-backend,id=vug,cmd="./vhost-user-gpu"
-device virtio-vga,virgl=true,vhost-user=vug

GPU socket commands:
- SCANOUT
- UPDATE
- GL SCANOUT
- GL UPDATE (+)
- CURSOR UPDATE

Could be handled outside of QEMU 
(spice or client)

Better perf
Better security
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Benefits of virgl out of process?

- avoids blocking qemu main loop

Shaders may take long to compile

- virgl needs to do polling (GL queries & fences)

- virgl crash (various crash/leaks fixed)

- GL isn’t a very safe API (size/buffer mismatch – ARB_robustness 
is an extension)
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Mdev / vfio overview

Q
E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

vfio-pci

H
o
st

 O
S

vfio / mdev

Can be mediated to hardware
Or just software (mtty sample)



54

VFIO in userspace?

Implement PCI devices in userspace with a VFIO-user?
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Conclusion

● Qemu is mostly monolithic & big today
● Strategies to run separate processes exist, but provide 

different interfaces & integration levels
● Use vhost-user for virtio devices
● Many ideas for a multi-process future
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Questions
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STOP STOP STOP STOP STOP STOP STOP

STOP
STOP
✓migrate

✗migrate
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Virtio device → vhost-user device

Check ioeventfd support

vhost_dev.vqs = g_new(vhost_queues, N) 

vhost_dev_init(vhost, chr, TYPE_USER, timeout) 

VirtioDeviceClass.set_status() & reset():
vhost_dev_enable_notifiers()

VirtioBus parent: set_guest_notifiers()

Set dev.acked_features = virtio.guest_features

vhost_dev_start()

vhost_virtqueue_mask() forall queues
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Q
E
M

U

Guest OS

virtio-net

Q
E
M

U
 2 Guest OS

vhost-pci-net

Vhost-pci WIP
(Inter-VM communication)

Q
E
M

U

Guest OS

virtio-net

Q
E
M

U
 1 Guest OS

virtio-net
vhost-user
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Heterogeneous QEMU

Master
Memory

Q
E
M

U
 M

a
st

e
r

IDM

VCPU X

QEMU Slave

VCPU Y

IDM
Slave

Memory

“[RFC PATCH 0/8] Towards an Heterogeneous QEMU” C. Pinto Sept 2015
& virtio-sdm & also xilinx remote-proc

IDM protocol
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