
Multi-process QEMU

Marc-Andre Lureau
Senior Software Engineer, Red Hat, Inc.

Konrad Rzeszutek Wilk
Software Director, Oracle

October 27 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Slim down QEMU

Konrad Rzeszutek Wilk

Software Director, Oracle, Inc.

Marc-Andre Lureau

Senior Software Engineer, Red Hat, Inc.

Presented with

2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

QEMU in virtualization

Xen usage of QEMU

KVM usage of QEMU

Security!

1

2

3

4

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

QEMU usage
• Both KVM and Xen use QEMU emulation (IDE, e1000)

• None use the binary translation in QEMU.
– Xen and KVM in the hypervisor code base deal with opcodes:

– movdqa m128,xmm
– (traped on MMIO access)

• KVM uses QEMU as control stack (launch/destroy guest) as in privileged
operations (access to /dev/kvm).

• Xen uses only QEMU emulation (which is why you can’t launch guests
with QEMU parameters and need to use libvirt or xl).

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Evil guest attack vectors

• Cloud provides have to deal with risk of customers becoming evil.

• The “customers” have usually four primary attack vectors:
– Emulation (VENOM – CVE-2015-3456) of floppy driver, VGA, NICs, etc in QEMU.

– MSRs (x2APIC range gap – CVE-2014-7188) of x2APIC emulation in hypervisor.

– VMCALL (hypercalls to hypervisor – CVE-2012-3497).

– Opcode emulations (INVEPT instructions – CVE-2015-0418).

• This talk is about the first: QEMU and ways to lessen the impact if it is
exploited, or alternatively erect more “jails” around QEMU.

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Xen and KVM architecture (usual)
6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Xen disaggregated architecture

● Move QEMU to be a standalone
guest running in ring0 (32MB
guest).

● Each stubdomain serves one
guest.

● Evil guest has to subvert stub
domain emulation first, then from
there jump to control domain.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Xen disaggregated architecture (network)

● Evil guest uses e1000 for attack.

● QEMU uses PV frontend driver to send
packets to real backend

● If evil guest subverts stub domain the
next attack is the PV protocol

● CVE-2015-8550: double fetch:

“Specifically the shared memory between the
frontend and backend can be fetched twice
(during which time the frontend can alter the
contents) possibly leading to arbitrary code
execution in backend.

● But protocol MUCH simpler
than emulated devices.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Xen disaggregated architecture (serial)

● Privilege opcodes (out/in) always
end up in hypervisor.

● A ring between hypervisor and
QEMU for device model to
process.

● QEMU and xenstored have a PV
ring to copy data back/forth.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Xen disaggregated architecture: jail around QEMU

● In effect the barrier between
QEMU and control stack is via the
PV ring.

● If evil guest exploits stub domain
they are the same place as
before.

● Attacks left then are via:
– MSRs

– Hypervisor hypercalls

– Opcode emulation

– (But this presentation is not about those
attacks).

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Can we do something similar in KVM?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• QEMU is used for emulation and control stack.
– If we disaggregate QEMU we can move each component in its own process.

• We have security measures in place:
– secomp & ebpf (filter the ioctls to /dev/kvm)

– Containers (chroot jails)

– Continuing work on improving QEMU security

• Sure, but separating components apart (each running in its own jail)
means we can focus security audit on the high-stake parts

• OK, how do we do this?

12

Can we do something similar in KVM? Is it needed?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 13

Multi-process QEMU

Marc-Andre Lureau
Senior Software Engineer, Red Hat, Inc.

Konrad Rzeszutek Wilk
Software Director, Oracle

October 27 2017

● Motivations for QEMU
● Requirements for devices

● KVM features

● Various QEMU solutions
● Conclusion & QA

18

A big binary

elmarco@boraha:~$ ls -lhS /bin/ | head -n20

-rwxr-xr-x. 1 root root 33M Aug 16 16:00 dockerd-current

-rwxr-xr-x. 1 root root 17M Sep 15 00:46 emacs-25.3

-rwxr-xr-x. 1 root root 16M Sep 7 16:32 node

-rwxr-xr-x. 1 root root 15M Jun 26 11:51 ocamlopt.byte

-rwxr-xr-x. 1 root root 15M Jul 4 15:33 doxygen

-rwxr-xr-x. 1 root root 13M Aug 16 16:00 docker-current

-rwxr-xr-x. 1 root root 12M Sep 8 21:59 qemu-system-aarch64

-rwxr-xr-x. 1 root root 12M Sep 8 21:59 qemu-system-arm

-rwxr-xr-x. 1 root root 12M Jun 26 11:51 ocaml

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-x86_64

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-i386

-rwxr-xr-x. 1 root root 11M Jun 26 11:51 ocamlc.byte

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-mips64el

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-mips64

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-mipsel

-rwxr-xr-x. 1 root root 11M Sep 8 21:59 qemu-system-mips

-rwxr-xr-x. 1 root root 7.1M Apr 25 17:44 crash

-rwxr-xr-x. 1 root root 6.9M Jun 26 11:51 ocamldoc.opt

-rwxr-xr-x. 1 root root 6.4M Jun 26 11:51 ocamlopt.opt

19

A big project

$ cloc qemu-2.10
- files: 4 280
- comment: 172 425
- code: 1 186 140

$ cloc kvmtool
- files: 275
- comment: 3 728
- code: 27 844
$ cloc crosvm
- code: 32 159

$ cloc linux
- files: 49 744
- code: 16 834 046

How much with all dependencies?

20

Still growing

1.0 1.5 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10
0

200000

400000

600000

800000

1000000

1200000

1400000

locMostly in C!

21

Many dependencies

● Fedora 26: qemu 2.9.0-5.fc26.x86_64

$ readelf -d /usr/bin/qemu-system-x86_64 | grep NEEDED | wc -l
60

$ ldd /usr/bin/qemu-system-x86_64 | wc -l
158

● Kvmtool (with all optional dependencies, gtk3, SDL, vncserver...)

$ readelf -d lkvm | grep NEEDED | wc -l
19

$ ldd lkvm | wc -l
83

22

Too big to fail

24

Paolo threads

VCPU0

VCPU3

VCPU1

VCPU2

UI

Dev1

Dev2

Dev3

libvirtd

Worker ...

Ideal architecture ?

qemu

Why not?

● The monolithic vs microkernel/services debate
● Difficult to manage
● Difficult to debug
● Difficult to test (test matrix)
● Performance?

Why seperate processes?

● Modularity
● clear interface separation = less conflicts/bql concerns
● smaller qemu, less dependencies
● allowing alternative implementations, “crazy” ideas
● separate projects, different release cycles...

● Isolation (+iommu) & crash robustness
● Better sandboxing (seccomp/ns)
● Easier monitoring/tweaking (memory, cpu etc)

Sandboxing for dummies

Change user id

Regular DAC/MAC check

Add/drop capabilites(7)

Subset of root privileges (if needed)

Namespaces(7)
Own view/access of the system (uid/pid/ns/net/ipc..)

Seccomp()/bpf

Filter syscalls

Libvirt, minijail, systemd, flatpack...

A word about memory fragmentation

All devices & workloads in a single process can lead to more
fragmentation.

Using subprocesses may help to partition the load and more
easily reclaim the space.

30

How? various strategies

● Fork-only strategy (crosvm)
● Code in same binary
● No version combinations, less modularity
● Device setup and teardown can be hardcoded in parent

● Exec a helper or device process
● Can allow arbitrary implementations
● IPC require greater level of stability
● Nicer if IPC allows various kind of devices

31

Managing the processes

● Qemu
● Not a great idea to fork from qemu (VM space, safety)
● Slirp & migration can do it...
● Could exec() from an helper process instead?

● Outside, libvirt or other:
● Not suitable for command line users
● Natural fit for libvirt etc

32

How? various device needs

● HW description & bus registration
● Communication mechanism:

● Io / Mmio regions & rw events, Irqs
● Memory map (& iommu)
● Or at higher level of abstraction (USB etc)

● acpi / device-tree manipulation (& fw_cfg)
● Device state & migration
● Dirty regions tracking, post-copy...
● Object hierarchy / introspection

33

KVM <-> device emulation

Direct memory access

Or VM exit:
run = mmap(cpufd,..)
ioctl(cpufd, KVM_RUN)
run→exit_reason == KVM_EXIT_IO/MMIO
run→io/mmio_addr mapping
BQL!
MemoryRegionOps.read/write()

← ioctl(vmfd, KVM_IRQ_LINE, irq_level)

34

KVM nifty ioctl

KVM_IOEVENTFD

This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address within the guest. A
guest write in the registered address will signal the provided event instead of triggering an
exit.

KVM_IRQFD

Allows setting an eventfd to directly trigger a guest interrupt.

35

Ioeventfd vs MemoryRegionOps

struct kvm_ioeventfd {

 __u64 datamatch;

 __u64 addr; /* legal pio/mmio address */

 __u32 len; /* 0, 1, 2, 4, or 8 bytes */

 __s32 fd;

 __u32 flags;

 __u8 pad[36];

};

Write only, coalesced events, not a range API

Extend it to support ranges - IOEVENTFD_FLAG_RANGE?

Then KVM_GET_IOEVENTS (similarity with AIO)

36

For traditional sync devices

IPC qemu → helper (necessary for TCG)

Introduce a KVM user device?
devfd = ioctl(vmfd, KVM_CREATE_DEVICE_USER)
reg = {
 .group = KVM_DEV_USER_GROUP,
 .attr = KVM_DEV_USER_SET_MEMORY_REGION,
 .addr = (struct) { .slot = 0,
 .addr = 0x3f8,
 .flags = PIO,
 .eventfd = efd }
}
ioctl(devfd, KVM_SET_DEVICE_ATTR, ®)
poll(efd)
ioctl(devfd, KVM_GET_DEVICE_CPU_EXITS, &exits)
ioctl(devfd, KVM_SET_DEVICE_CPU_EXITS, &exits)

37

Migration

In qemu stream vs out of stream

Handled by qemu or not

Security aspect

Share VMState infrastructure with helper?
Instead of blobs

Make it a library, IPC hook for saving/loading to/from stream

Unlikely to be accepted as standard in external projects

Mostly non-existent today, with rare exceptions

38

And today?

✔ VNC / Spice
✔ Block devices
✔ usbredir / cacard
✔ ipmi-bmc-extern
✔ TPM emulation
✔ ivshmem device
✔ vhost, vhost-user
✔ VFIO/mdev

39

VNC & Spice

UI in remote process

Resume session

Migration

VT & monitor?

40

What about?

QEMU to start a graphical client instead?

Remove GTK/SDL/VTE/audio code from qemu?

41

Block devices

$ qemu-nbd -k nbd.sock vm.qcow2

$ qemu -drive driver=nbd,
 server.path=nbd.sock,server.type=unix

NBD server
process

Qemu
process

(other protocols exist: iSCSI, NBD, SSH, Sheepdog, gluster, http/ftp..)

42

Block devices

Would performance be good enough for general case?

Could use shared memory, to avoid extra copy, opportunistic polling...

43

Usbredir

$ usbredirserver -p 2001 <vendorid>:<prodid>

$ qemu <ehci-uhci> …
-chardev socket,port=2001,id=chr
-device usb-redir,chardev=chr

USB device
process

Qemu
process

✓migrate ✗migrate

44

USB Devices

QEMU emulation of USB devices in
standalone process using usbredir API?

45

Cacard

$ qemu … -device usb-ccid
-chardev socket,server,port=2001,id=chr
-device ccid-card-passthru,chardev=chr

$ vscclient <host> 2001

Smartcard
process

Qemu
process

✓migrate ✗migrate

46

Ipmi-bmc-extern

$ ipmilan -c conf-file -f cmd-file -s statedir

$ qemu … -device ipmi-bmc-extern,chardev=chr
-chardev socket,id=chr,host=localhost,port=…
-device isa-ipmi-bt,bmc=bmc0,irq=0

Ipmi/BMC
process

Qemu
process

47

TPM emulator

$ swtpm socket --tpmstate dir=/tmp/myvtpm --ctrl
type=unixio,path=/tmp/ctrl

$ qemu … -tpmdev emulator,id=tpm0,chardev=chr
-chardev socket,id=chr,path=/tmp/ctrl
-device tpm-tis,tpmdev=tpm-tpm0,id=tpm0

TPM device
process

Qemu
process

✓migrate soon

48

Vhost overview

Q
E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

Virtio dev

H
o
st

 O
S

vhost
Linux:
- net
- vsock
- scsi

49

vhost-user
Q

E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

virtio
vhost-user

 Virtio dev

vhost-user

events: kick/call

-net, -scsi today!

-blk, -gpu, -input, -crypto coming!

50

Vhost(-user) in a nutshell

Memory listener to have RAM flat view

SET_MEM_TABLE

SET_VRING_ADDR,
SET_VRING_NUM

SET_VRING_KICK(fd), SET_VRING_CALL(fd)

(Fd) Guest
Address

User
Address

Size

34 0xA000 0xf2bc0000 0x40000000

...

Index Desc
Address

Used
Address

Avail
Address

0 0xf2bc100
0

0xf2bc200
0

0xf2bc3000

51

vhost-user-gpu = gpu stack out
Q

E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

virtio-gpu
vhost-user-gpu

 Virtio dev

vhost-user

GPU UPDATE

-object vhost-user-backend,id=vug,cmd="./vhost-user-gpu"
-device virtio-vga,virgl=true,vhost-user=vug

GPU socket commands:
- SCANOUT
- UPDATE
- GL SCANOUT
- GL UPDATE (+)
- CURSOR UPDATE

Could be handled outside of QEMU
(spice or client)

Better perf
Better security

52

Benefits of virgl out of process?

- avoids blocking qemu main loop

Shaders may take long to compile

- virgl needs to do polling (GL queries & fences)

- virgl crash (various crash/leaks fixed)

- GL isn’t a very safe API (size/buffer mismatch – ARB_robustness
is an extension)

53

Mdev / vfio overview

Q
E
M

U

Guest OS

virtio-netQ
E
M

U

Guest OS

vfio-pci

H
o
st

 O
S

vfio / mdev

Can be mediated to hardware
Or just software (mtty sample)

54

VFIO in userspace?

Implement PCI devices in userspace with a VFIO-user?

55

Conclusion

● Qemu is mostly monolithic & big today
● Strategies to run separate processes exist, but provide

different interfaces & integration levels
● Use vhost-user for virtio devices
● Many ideas for a multi-process future

56

Questions

57

STOP STOP STOP STOP STOP STOP STOP

STOP
STOP
✓migrate

✗migrate

58

Virtio device → vhost-user device

Check ioeventfd support

vhost_dev.vqs = g_new(vhost_queues, N)

vhost_dev_init(vhost, chr, TYPE_USER, timeout)

VirtioDeviceClass.set_status() & reset():
vhost_dev_enable_notifiers()

VirtioBus parent: set_guest_notifiers()

Set dev.acked_features = virtio.guest_features

vhost_dev_start()

vhost_virtqueue_mask() forall queues

59

Q
E
M

U

Guest OS

virtio-net

Q
E
M

U
 2 Guest OS

vhost-pci-net

Vhost-pci WIP
(Inter-VM communication)

Q
E
M

U

Guest OS

virtio-net

Q
E
M

U
 1 Guest OS

virtio-net
vhost-user

60

Heterogeneous QEMU

Master
Memory

Q
E
M

U
 M

a
st

e
r

IDM

VCPU X

QEMU Slave

VCPU Y

IDM
Slave

Memory

“[RFC PATCH 0/8] Towards an Heterogeneous QEMU” C. Pinto Sept 2015
& virtio-sdm & also xilinx remote-proc

IDM protocol

	Slide 1
	Title Slide with Picture and Logo
	Slide 3
	Slide 4
	Title, Subtitle, and Content Layout
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

